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Abstract— In this paper on the base of representative volume 

element (RVE) the modified shear lag model was used to 

investigate the stress state, stress transfer and interface fracture 

energy of nanofiber/matrix composite. The RVE is subjected to 

static mechanical and physical load, e.g. temperature and 

moisture excitation. The solution of the problem is considered 

for the cases of perfect bond of the interface, perfect bond  and 

break of the fiber, perfect bond and partially interface 

debonding and break of the fiber as well. The obtained in closed 

analytical form results for axial stress and shear interfacial 

stress as well as the debond length are illustrated in figures. As a 

numerical example, the carbon nanofiber (CNF)/epoxy 

composite is considered. Three cases are studied: elastic with 

static mechanical loading, elastic with static mechanical loading 

and temperature and elastic with static mechanical loading with 

temperature and moisture. All three cases are compared in 

respective figures. The presence of the initial partial debond 

leads to smaller values of the respective fiber axial and interface 

shear stresses as well as to the magnitude of the plateau of the 

axial fiber stress. As a consequence, the progressive interfacial 

debonding is considered as well. The influence of the 

temperature excitation (20o–30oC) at given characteristics of the 

chosen CNF composite on the interface debond length is 

negligible, while the influence of moisture is significant 

especially for the case of progressive interface debonding. It is 

shown that the influence of the moisture on CNF is bigger at 

smaller volume fraction. At smaller aspect ratio (AR) the values 

of the stress transfer function (STF) are smaller when the 

influence of the moisture is taken into account and further it 

increases with the increasing of the mechanical load. The 

influence of the temperature and moisture on the debonding 

length is also estimated and some conclusions and 

recommendations are done. 

 

Index Terms— fiber/matrix composite, shear lag model, 

interface debond length, temperature and moisture excitation 

 

I. INTRODUCTION 

  In the last century the reinforced composite successfully 

took place in different industrial applications. When the 

nanotechnology proposed as reinforcements of polymer and 

metal/ceramic matrix (CFRC) the nanoparticles, nanotubes 

and nanofibers, the interest of the scientific community 

extremely increases and was directed to experimental and 

modeling activities. The main problem there is the damage 

behavior of the reinforcement embedded in the matrix. The 

different thermal and elastic characteristics of both consistent 

of the composite lead to appearance of interface damage, 

known as interface delamination, fiber break, matrix crack 
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[1.2].  So, the adhesion between fiber and matrix requires 

adequate understanding of damage behavior, Based on the 

micro and macro experimental techniques for measuring the 

adhesion between fibers and matrices in composites one can 

estimate for example the effect of fiber surface treatment on 

the interfacial shear strength for the cases of the single-fiber 

pull-out [3], the single-fiber fragmentation [4, 5] and the 

micro-indentation test [6]. All techniques can serve for 

different applications. For example, the single-fiber 

fragmentation test is practically used for characterization of 

the fiber-matrix interfacial toughness (strength) in composite 

materials. 

On the base of the experimental data and conclusions on 

the transfer mechanism in CFRC, the analytical modeling [7] 

and numerical simulations can help in the understanding the 

analysis of these materials, reducing and optimizing the 

design and cost of considered composite materials. According 

to [8], the analysis of the representative volume element 

(RVE) model is the first step in analyzing the CFRC [8]. In [9] 

the RVE of a simplified 3D model for a wavy carbon 

nanotube (CNT) have been considered to study the stress 

transfer in reinforced composites. The proposed model can 

predict axial as well as interfacial shear stresses along a wavy 

CNT embedded in a matrix. The influence of the interfacial 

debonding along the fibers on the effective moduli of 

CNT-reinforced composites was studied by a simple 

analytical model [10]. Based on Mori-Tanaka approach a new 

improved interface model is proposed, that includes the 

nanoparticle geometry and clustering effects [11]. Lui and Xu 

[12] using boundary element method (BEM) to investigate the 

curved cracks at the interphases between the fiber and matrix 

and to calculate the stress intensity factors (SIFs). In [13] the 

influence of the geometry of carbon nanotubes (CNTs on the 

macroscopic stiffness and microscopic stresses of CNT 

reinforced polymer composites is estimated on the base of on 

the multi-scale homogenization theory. In the extensive 

review [14], the investigations done by the experiments and 

theory of micronanomechanics as well as numerical analysis 

on characterizing mechanical properties of nanocomposites is 

presented and discussed. 

The constant shear lag model [15] is one of the most used 

analytical method to study the transfer mechanism in 

reinforced composites. The reduction scheme (given in [16]) 

from 2D to 1D elastic problem is based on the classical shear 

lag model proposed in [15].  This model and its further 

modifications [17-18] shows the large applications and good 

efficiency comparing with various numerical methods. 

In this paper on the base of Representative Volume 

Element (RVE) the shear lag model is used to investigate the 

stress state, stress transfer and interface fracture energy in 

CNF/matrix composite, subjected to mechanical loading 

under influence of environmental physical conditions such as 

temperature and moisture. The obtained in closed analytical 
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form results for axial stress, shear interfacial stress and 

debond length as well as the STF and fracture energy are 

illustrated in figures and discussed. The presence of initial 

partial interface debonding is included in further analytically 

calculated progressive interface debonding. The effect of 

aspect ratio, volume fraction and the presence of initial 

interface debond are also discussed. The novelty of this work 

is the influence of environment conditions on interfacial 

damage of CNF composites.  

 

II.  STATE AND SOLUTION OF THE PROBLEM 

A.  Shear Lag Model 

Taking into account the periodicity of such a composite 

material, a stress-strain behavior of the RVE shown in Fig. 1 

under applied tensile stress 
0

 
is under consideration. The 

nanofiber/matrix interface is perfect bonded or particularly 

debonded. A carbon nanofiber with a length l2  and radius 

r  is embedded in the matrix material with a width  rR 2 . 

On Fig. 1 d denotes the given initial debond and dl  - the 

debond length obtained after applying the load 
0 . Due to 

the symmetry, only a quarter of the RVE is considered.  

The environmental influence such as temperature and 

moisture excitation, the presence of initial debond length and 

fiber break are considered additionally of [18].  
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Fig. 1. Representative volume element 

 

The following system of differential equations for the 

equilibrium of the RVE is given as follows: 
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where k , k  ( f - nanofiber, m - matrix) are the 

axial and shear stress and 
Iryfrym   
, T  and H  

are the temperature and moisture, respectively.  The 

constitutive equations are:  
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where 
u is the displacement, E  is the Young’s modulus, 

  is the Poisson’s ratio  mf ,  and 
m  is the 

coefficient of thermal expansion of the matrix. 

Here and bellow the following notations are used: 
  xy , 



  x , 
 uux  , ),( mf , f

r

fryf  


, 

r

mrym  


, 
R

mRym  


, 
R

mRym uu 
,

r

mrym uu 
. 

 

Boundary and contact conditions are given bellow: 

- boundary conditions: 
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- contact conditions: 
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Integrating the equilibrium equation (1) with respect y  

from 0 to r  we obtain:    
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The equilibrium equation (1) for matrix gives: 
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Solution of (5) for two boundaries ry   and 

Ryr   provides the shear stress in matrix: 
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i.e. 
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From (7) and (8) we get a following relation: 
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From (8) and (13) we have: 
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Integrating both side of (10) with respect to y  from r  to 

R  we have i  in terms of displacement: 
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Substituting (11) into (9) we also have: 
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The displacement mu  can be derived from (10) and (12): 
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Differentiating (13) with respect to x  and multiplying by 

mE  we have: 
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The equilibrium equation for the stresses in the RVE has 

the form: 
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From (14) and (15) we have: 
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Combining (5) and (11) and substituting (16) we obtain: 
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The solution of (17) is: 
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where 
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Coefficients 
1A  and 

2A  can be determined using the 

following boundary conditions:  

- for perfect bond on the interface  lx 0  
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- for perfect bond on the interface  lx 0  and fiber 

break 
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- for perfect bond  dlx 0 and partially 

debond  lxdl   on the interface  
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- for perfect bond  dlx 0  and partially 

debond  lxdl   on the interface and fiber break 
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Length of debond dl  can be found from the condition: 
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B.  Stress Transfer Function 

The stress transfer function is defined as the fiber axial 

stress which is integrated over the fiber length and normalized 

in order to make stress transfer function independent of fiber 

length [16]: 
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C.  Interface Fracture Energy 

The interface fracture energy is defined as the energy per 

unit area needed to break the fiber/matrix interface. 

The approach proposed in [19, 20] will be applied in 

present analysis to determine the interface fracture energy in 

the presence of an initial debond at the fiber/matrix interface. 

The strain energy for fully-bonded (
bondingfull

fU 
), and 

partially-debonded (
bondingpartial

fU 
) fiber/matrix interface is 

determined following [21]: 
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and the expression for the interface fracture energy has the 

form: 
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where d  is the initial debond length. 

 

III. NUMERICAL EXAMPLE AND RESULTS 

As a numerical example a RVE (Fig.1) is considered at 

following conditions: fiber break, full bonded interface and 

partially bonded interface (the initial debond exists). The 

RVE has the following geometrical, loading, and 

environmental characteristics:  
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Fig. 2. Fiber axial (a) and interface shear (b) stresses along the 

fiber length 
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The characteristics of materials are given in Table I. 

The following cases are considered: 

case 1: elastic problem 

0,0,0,0  mmff   

case 2: thermo-elastic  problem  

0,0,0,0  mmff   

case 3:  hygro-thermo-elastic  problem  

0,0,0,0  mmff   

 

Table I. Mechanical properties of materials [22] 

Property 
Carbon 

fiber 

Epoxy 

matrix 

Young’s modulus (GPa) 276 4.14 

Poisson’s ratio 0.33 0.36 

Coefficient of thermal 

expansion (1/
o
C) 

7.2x10
-6

 45x10
-6

 

Coefficient of moisture 

expansion (1/wtr. %) 
0 3.24x10

-3
 

 

The behavior of the axial fiber stress and interfacial shear 

stress along the fiber length is shown in Fig. 2. As expected, 

the maximum axial stress is in the middle of the fiber and it is 

determined as a saturated point. The maximum shear stress is 

at the fiber end (singularity of interface shear stress) and tends 

to zero at the middle of the fiber. The size of plateau of axial 

fiber stress increases and the maximum values of interface 

shear stress increase when the moisture is taken into account. 
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Fig. 3. Progressive contact (a) and debond (b) length for 

monotonically increasing static load 

The interface progressive debond length and respective 

intact zones for the case of monotonically increasing static 

loading taking into account the previous debond lengths as 

initial ones are shown in Fig. 3. In fact if the function debond 

length-loading is taken as a basic one, the curve for intact 

zone of the fiber is the inversion function to the basic. This 

result is reasonable from engineering point of view, but must 

be proved, which was done. 

It has to be pointed out (Fig. 3) that the value of debond 

length is smaller in the case of the presence of temperature 

and moisture excitation (case 2 and case 3). For the case 3 it 

can be seen that after some value of the mechanical load the 

interface debonding appears suddenly with a bigger length, 

comparing with cases 1 and 2. 

A. Effect of Aspect ratio (AR) 

The aspect ratio is defined as the ratio of CNF length to its 

assumed diameter. Further on, the diameter is assumed to be 

constant but its length is assumed variable. 

Fig. 4 shows the influence of CNF aspect ratio on the fiber 

axial and interfacial shear stresses. The stress distribution 

plots are very similar in both the cases. With the increase of 

aspect ratio, the rate of CNF axial stress and the length of the 

saturation plateau become higher. The presence of moisture 

leads to decreasing/absence of the plateau at a small AR. 
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Fig. 4. Effect of aspect ratio on the axial fiber (a) and interface 

shear (b) stresses distribution 
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Fig. 5. Effect of aspect ratio on debond length for different 

values of the mechanical load 
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Fig. 6. Effect of aspect ratio on STF for different values of the 

mechanical load 

 

Coming to Fig. 5 one can see the dependence of the 

interface debond length on the external loading with/without 

temperature and moisture for two values of AR. Very clear is 

the increasing of the debond length with decreasing the AR   at 

presence of moisture and increasing of mechanical load.  

Fig. 6 shows the values of STF for different values of AR 

and mechanical load. It has to be denoted that at smaller AR 

the values of STF are smaller when the influence of the 

moisture is taken into account and further increases with the 

increasing of the mechanical load. 

B. Effect of CNF Volume Fracture 

Following the definition the CNF volume fraction is 

defined as the ratio of the CNF to RVE cross-section areas. 

The CNF volume fraction is varied by varying the matrix 

width (Fig. 1). 

Fig. 7 shows the effect of CNF volume fraction on the 

distribution of axial shear stresses versus CNF length at 

100AR . At this value of AR the plateau length is close to 

the given CNF length. The results show reduced axial and 

shear stresses with increased CNF volume fractions. 
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Fig. 7. Effect of CNF volume fraction on axial fiber (a) and 

interface shear stress (b) 

The effect of CNF volume fraction on debond length can be 

seen on Fig. 8. The results show the decreasing of debond 

length at the increasing of CNF volume fracture. When the 

moisture and the applied mechanical load increase the debond 

length decreases as well. 
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Fig. 8. Effect of CNF volume fraction on debond length 
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Fig. 9. Effect of CNF volume fraction on values of STF 

 

Fig. 9 shows the effect of CNF volume fraction on values of 

STF. The values of STF are bigger at smaller CNF volume 

fraction and increase with increasing the mechanical load. 

The influence of the moisture on CNF is bigger at smaller 

volume fraction. 

C. Effect of Initial Debond Length 

Figures 10-13 show the effect of initial partial debond on 

the distribution of axial and interface shear stress, debond 

length, stress transfer function and interface fracture energy 

along the CNF length. 
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Fig. 10. Effect of initial partial debonding on the fiber axial 

(a) and interface shear (b) stresses 

0.0 0.2 0.4 0.6 0.8 1.0

10

20

30

40

50

case1 case2 case3

   d=  0 nm

   d=10 nm

   d=30 nm

D
eb

on
d 

le
ng

th
 l

d (
nm

)

Applied load 
0
 (GPa)

 
Fig. 11. Effect of initial partial debonding on the debond 

length 
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Fig. 12. Effect of initial partial debonding on the stress 

transfer function 

 

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8  d=10 nm   d=30 nm

           case 1

           case 2

           case 3

In
te

rf
ac

e 
fr

ac
tu

re
 e

ne
rg

y 


i (
kJ

/n
m

2 )

Applied load 
0
 (GPa)

 
Fig. 13. Effect of initial partial debonding on the interface 

fracture energy 

 

For this purpose an aspect ratio 100AR  and length of 

debonding nmd 30,10  are selected. The results show 

reduced axial and interfacial shear stress (Fig. 10). The 

presence of the initial partial debond leads to smaller values 

of the respective fiber axial and interface shear stresses as 

well as to the magnitude of the plateau of the axial fiber stress 

(Fig. 10). 

The influence of initial partial debond on the progressive 

debond length, stress transfer function and interface fracture 

energy is significant (Figs. 11-13). The values of the 

progressive debond length and interface fracture energy 

increase with increasing of the initial partial interface debond, 

mechanical load and moisture (Figs. 11, 13). The values of the 

stress transfer function also increase with the increasing of the 

mechanical load, but they decrease with increasing of the 

initial debond length and appearance of the moisture (Fig. 

12). At a given bigger value of the initial partial debonding the 

influence of the temperature and moisture on the debond 

length and stress transfer function is negligible. 

IV. CONCLUSION 

Following the obtained and illustrated results for the cases 

1, 2 and 3 at given mechanical, geometrical and 

environmental characteristics of CNF composites the 

respective conclusions can be made: 

 As well known, the maximum interfacial shear stress 

occurs at the fiber end (singularity of interfacial shear 

stress) and falls to zero along the middle of the fiber. 

However, the size of plateau of fiber axial stress slowly 

increases and the maximum values of interfacial shear 

decreases when the influence of moisture is taken into 

account. 

 The influence of the temperature excitation (20
o
-30

o
C) at 

given characteristics of the chosen CNF composite on the 

interface debond length is negligible, while the influence of 

moisture is significant especially for the case of progressive 

interface debonding. 

 The values of the progressive debond length and interface 

fracture energy increase with increasing of the initial partial 

interface debond, mechanical load and moisture.  

 The presence of the initial partial debond leads to smaller 

values of the respective fiber axial and interface shear 

stresses as well as to the magnitude of the plateau of the 

axial fiber stress. 

 The influence of the moisture on CNF is bigger at smaller 

volume fraction.  

 At smaller AR the values of STF are smaller when the 

influence of the moisture is taken into account and further 

increases with the increasing of the mechanical load. 

The results obtained in the present paper could serve for 

quick prognoses for the interfacial damage behavior of the 

CNF composites under combine mechanical and physical 

loading (temperature and moisture) in order to predict their 

interface damage behavior.  
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